The structure of polynomial operations associated with smooth digraphs

Gergő Gyenizse, Miklós Maróti and László Zádori
University of Szeged

Boulder, 2014. May 21.

Digraphs, HOMOMORPHISMS AND POLYMORPHISMS

Definition

A digraph is a pair $\mathbb{G}=(G ; \rightarrow)$, where G is the set of vertices and $\rightarrow \subseteq G^{2}$ is the set of edges.

Definition

A homomorphism from \mathbb{G} to \mathbb{H} is a map $f: G \rightarrow H$ that preserves edges:

$$
a \rightarrow b \text { in } \mathbb{G} \quad \Longrightarrow \quad f(a) \rightarrow f(b) \text { in } \mathbb{H} .
$$

$\operatorname{Hom}(\mathbb{G}, \mathbb{H})=\{f \mid f: \mathbb{G} \rightarrow \mathbb{H}\}$, write $\mathbb{G} \rightarrow \mathbb{H}$ iff $\operatorname{Hom}(\mathbb{G}, \mathbb{H}) \neq \emptyset$.

Definition

The clone of polymorphisms of \mathbb{G} is $\operatorname{Hom}(\mathbb{G})=\bigcup_{n=1}^{\infty} \operatorname{Hom}\left(\mathbb{G}^{n}, \mathbb{G}\right)$.

CSP AND CORES

Definition

The constraint satisfaction problem for template \mathbb{H} is the membership problem for

$$
\operatorname{CSP}(\mathbb{G})=\{\mathbb{H} \mid \mathbb{H} \rightarrow \mathbb{G}\}
$$

Proposition

\rightarrow is a quasi-order on the set of finite digraphs. If \mathbb{G} is a minimal member of the \leftrightarrow class of \mathbb{H}, then

- every endomorphism of \mathbb{G} is an automorphism,
- \mathbb{G} is uniquely determined up to isomorphism, and
- \mathbb{G} is isomorphic to an induced substructure of \mathbb{H}.

Definition

\mathbb{G} is a core if it has no proper endomorphism. The core of \mathbb{H} is the uniquely determined core structure in the \leftrightarrow class of \mathbb{H}.

Finite duality and exponentiation

- set of finite relational structures modulo \leftrightarrow is a partially ordered set
- isomorphic to the set of core isomorphism types
- minimal [maximal] element: 1-element structure, with empty [full] relations
- join: disjoint union, meet: direct product,
- satisfies distributive laws, join irreducible = connected
- Heyting algebra (relatively pseudocomplemented)
- $\mathbb{F} \wedge \mathbb{G} \rightarrow \mathbb{H} \Longleftrightarrow \mathbb{H}^{\mathbb{F} \times \mathbb{G}}=\left(\mathbb{H}^{\mathbb{G}}\right)^{\mathbb{F}}$ has a loop $\Longleftrightarrow \mathbb{F} \rightarrow \mathbb{H}^{\mathbb{G}}$
- if \mathbb{G} is join irreducible with lower cover \mathbb{H}, then $\left(\mathbb{G}, \mathbb{H}^{\mathbb{G}}\right)$ is a dual pair

Theorem (Nešetřil, Tardif, 2010)

Let \mathbb{G} be a finite connected core structure. Then \mathbb{G} has a dual pair \mathbb{H}, i.e. $\{\mathbb{F} \mid \mathbb{F} \rightarrow \mathbb{G}\}=\{\mathbb{F} \mid \mathbb{H} \nrightarrow \mathbb{F}\}$, if and only if \mathbb{G} is a tree.

Exponentiation

Definition

Let $\mathbb{H}^{\mathbb{G}}$ be the digraph on the set H^{G} with edge relation $f \rightarrow g$ iff

$$
a \rightarrow b \text { in } \mathbb{G} \Longrightarrow f(a) \rightarrow g(b) \text { in } \mathbb{H} .
$$

Proposition

- $\operatorname{Hom}(\mathbb{G}, \mathbb{H})=\left\{f \in \mathbb{H}^{\mathbb{G}}: f \rightarrow f\right\}$
- $\mathbb{G}^{n}=\mathbb{G}^{\mathbb{L}_{n}}$ where $\mathbb{L}_{n}=(\{1, \ldots, n\} ;=)$
- $\left(\mathbb{H}^{\mathbb{G}}\right)^{\mathbb{F}}=\mathbb{H}^{\mathbb{G} \times \mathbb{F}}$
- $\mathbb{H}^{\mathbb{F}} \times \mathbb{G}^{\mathbb{F}}=(\mathbb{H} \times \mathbb{G})^{\mathbb{F}}$
- the composition map $\circ: \mathbb{H}^{\mathbb{G}} \times \mathbb{G}^{\mathbb{F}} \rightarrow \mathbb{H}^{\mathbb{F}}$ is a homomorphism
- If $f \rightarrow g$ in $\mathbb{H}^{\mathbb{G}^{n}}$ and $f_{1} \rightarrow g_{1}, \ldots, f_{n} \rightarrow g_{n}$ in $\mathbb{G}^{\mathbb{F}}$, then

$$
f\left(f_{1}, \ldots, f_{n}\right) \rightarrow g\left(g_{1}, \ldots g_{n}\right) \text { in } \mathbb{H}^{\mathbb{F}}
$$

$\mathbb{G}^{\mathbb{G}}$ IS INTERESTING

- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a solution. Can we test for non-trivial solutions?
- $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}=\mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\operatorname{CSP}(\mathbb{G})$, then we can test if an instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$, then we can solve $\operatorname{CSP}(\mathbb{G})$.
- Connectivity properties of \mathbb{G}^{G} sometimes can be lifted to the set of solutions in $\left(\mathbb{G}^{G}\right)^{-1 /}$
- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a solution. Can we test for non-trivial solutions?
- $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}=\mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\operatorname{CSP}(\mathbb{G})$, then we can test if an instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$, then we can solve $\operatorname{CSP}(\mathbb{G})$.
- Connectivity properties of \mathbb{G}^{G} sometimes can be lifted to the set of solutions in $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}$
- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a solution. Can we test for non-trivial solutions?
- $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}=\mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\operatorname{CSP}(\mathbb{G})$, then we can test if an instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$, then we can solve $\operatorname{CSP}(\mathbb{G})$.
- Connectivity properties of \mathbb{G}^{G} sometimes can be lifted to the set of solutions in $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}$
- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a solution. Can we test for non-trivial solutions?
- $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}=\mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\operatorname{CSP}(\mathbb{G})$, then we can test if an instance of $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\operatorname{CSP}\left(\mathbb{G}^{\mathbb{G}}\right)$, then we can solve $\operatorname{CSP}(\mathbb{G})$.
- Connectivity properties of $\mathbb{G}^{\mathbb{G}}$ sometimes can be lifted to the set of solutions in $\left(\mathbb{G}^{\mathbb{G}}\right)^{\mathbb{H}}$.

Connectivity in \mathbb{G}^{G}

Theorem (Gyenizse; 2013)

Suppose, that $|\mathbb{G}| \geq 6$. Then $\mathbb{G}^{\mathbb{G}}$ is connected if and only if

- \mathbb{G} is empty,
- there exists $a \in G$ such that $a \rightarrow x$ for all $x \in G$, or
- there exists $a \in G$ such that $x \rightarrow a$ for all $x \in G$.

Definition

$\operatorname{End}(\mathbb{G})$ is the induced subgraphs of $\mathbb{G}^{\mathbb{G}}$ on $\operatorname{Hom}(\mathbb{G}, \mathbb{G})$. $\operatorname{Aut}(\mathbb{G})=\operatorname{End}(\mathbb{G}) \cap \operatorname{Sym}(G)$.

Theorem (Gyenizse; 2013)

Aut (\mathbb{G}) is a disjoint union of complete digraphs. The number of elements in each component is the same and is a product of factorials.

Structure, polymorphisms and connectivity

Theorem (Larose, Zádori; 1997)

If \mathbb{G} is a connected poset and has Maltsev polymorphisms, then $\operatorname{End}(\mathbb{G})$ is connected.

```
Theorem (Larose, Loten, Zádori; 2005)
If \(\mathbb{G}\) is connected, reflexive, symmetric and has Hobby-McKenzie polymorphisms (for omitting types \(\mathbf{1}\) and \(\mathbf{5}\) ), then \(\operatorname{End}(\mathbb{G})\) is connected.
```


Theorem (M, Zádori; 2012)

If \mathbb{G} is connected, reflexive and has Hobby-McKenzie polymorphisms, then End (\mathbb{G}) is connected.

Collapse of Maltsev conditions

Theorem (Larose, Loten, Zádori; 2005)

If a finite reflexive and symmetric digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism

Theorem (M, Zádori; 2012)

If a finite reflexive digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism and totally symmetric polymorphisms for all arities.

Theorem (Kazda; 2011)

If a finite digraph has a Maltsev polymorphism, then it has a majority polymorphism.

How far can we push this?

- We need a structural property on \mathbb{G}
- We need an induced subgraph of $\mathbb{G}^{\mathbb{G}}$
- We need some polymorphisms of \mathbb{G}

Reduction of CSP to digraphs

Theorem (Bulín, Delić, Jackson, Niven; 2013)

For every finite relational structure \mathbb{A} there exists a finite digraph \mathbb{G}, such that $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{CSP}(\mathbb{G})$ are polynomially equivalent and almost all Maltsev conditions, e.g.

- Taylor term,
- Willard terms,
- Hobby-McKenzie terms,
- Gumm terms,
- edge term,
- Jónsson terms,
- near-unanimity term,
- but not Maltsev term hold equivalently by \mathbb{A} and \mathbb{G}.

Required structural Property

Definition

The digraph \mathbb{G} is smooth if its edge relation is subdirect (no sources and sinks).

Definition

The algebraic length of a directed path is the number of forward edges minus the number of backward edges. The algebraic length of \mathbb{G} is the smallest positive algebraic length of oriented cycles (closed paths) of \mathbb{G}.

- If \mathbb{G}^{2} is connected, then \mathbb{G} is connected, has algebraic length 1 and has no source or no sink.
- If \mathbb{G} is smooth, algebraic length 1 and (strongly) connected, then \mathbb{G}^{n} is smooth, algebraic length 1 and (strongly) connected for all $n \geq 1$.

Theorem

If $\mathbb{G}=(G ; E)$ is smooth, connected, algebraic length 1 , and has Maltsev polymorphism, then it has join and meet polymorphisms.

The loop lemma

Lemma (Barto, Kozik, Niven; 2008)

If \mathbb{G} is connected, smooth, algebraic length 1 and has a weak near-unanimity polymorphism, then \mathbb{G} has a loop.

Theorem (Barto, Kozik, Niven; 2008)

The core of a smooth digraph with a weak near-unanimity polymorphism is a disjoint union of cycles.

Proposition

If $\mathbb{G}^{\mathbb{G}}$ is strongly connected, then \mathbb{G} has a loop.
Take a path id $\rightarrow f_{1} \rightarrow f_{2} \rightarrow \ldots f_{n} \rightarrow$ id where f_{k} is a constant map. Then id $\cdot f_{1} \cdots f_{n-1} \cdot f_{n} \rightarrow f_{1} \cdot f_{2} \cdots f_{n}$. id, so we have a loop at $f_{1} \cdots f_{n}$, which is a constant map.

Connectivity in End(G)

Example

The following digraph \mathbb{G} has Maltsev, join and meet semilattice polymorphisms.

It has only four endomorphisms: id, 0,1 and inversion, they are all isolated. However, id is connected to 0 in $\mathbb{G}^{\mathbb{G}}$:

$$
\text { id }=x \wedge 1 \rightarrow x \wedge a \rightarrow x \wedge 0=0
$$

Required subgraph of $\mathbb{G}^{\mathbb{G}}$

Definition

$\operatorname{Pol}_{1}(\mathbb{G})$ is the induced subgraph of $\mathbb{G}^{\mathbb{G}}$ on the set of unary polynomials of the algebra $\mathbf{G}=(G ; \operatorname{Hom}(\mathbb{G}))$.

Proposition

- $\operatorname{Pol}_{1}(\mathbb{G}) \leq \mathbf{G}^{G}$ is generated by the identity and the constant maps
- \mathbb{G} is an induced subgraph of $\mathrm{Pol}_{1}(\mathbb{G})$ on the set of constant maps
- $\operatorname{Pol}_{1}(\mathbb{G})$ is smooth if and only if \mathbb{G} is smooth
- If \mathbb{G} is smooth, connected and algebraic length 1 , then every component of $\mathrm{Pol}_{1}(\mathbb{G})$ has algebraic length 1

Proof.

For a polynomial $p=t\left(x, a_{1}, \ldots, a_{n}\right)$ we can find an oriented cycle in \mathbb{G}^{n} of algebraic length 1 going through $\left(a_{1}, \ldots, a_{n}\right)$. Then the polymorphism $t \in \operatorname{Hom}\left(\mathbb{G}^{n+1}, \mathbb{G}\right)=\operatorname{Hom}\left(\mathbb{G}^{n}, \mathbb{G}^{\mathbb{G}}\right)$ maps this cycle to a cycle in $\operatorname{Pol}_{1}(\mathbb{G})$.

Twin polynomials

Proposition

If \mathbb{G} is smooth, connected and algebraic length 1 , then the connectedness relation on $\mathrm{Pol}_{1}(\mathbb{G})$ is a congruence.

Definition

Let \mathbf{A} be an algebra. Two unary polynomials $p, q \in \operatorname{Pol}_{1}(\mathbf{A})$ are twins, if there exist a term t of arity $n+1$ and constants $\bar{a}, \bar{b} \in A^{n}$ such that

$$
p=t(x, \bar{a}) \quad \text { and } \quad q=t(x, \bar{b})
$$

The transitive closure of twin polynomials is the twin congruence τ of the algebra $\operatorname{Pol}_{1}(\mathbf{A})$.

Corollary

If \mathbb{G} is smooth, connected and algebraic length 1 , then the twin congruence blocks are connected.

The component of the identity

Definition

A map $f \in \mathbb{G}^{\mathbb{G}}$ is idempotent, if $f^{2}=f$; it is a retraction, if $f \rightarrow f$ and $f^{2}=f$; and it is proper, if $f \neq$ id.

Lemma (M, Zádori; 2012)

If \mathbb{G} is reflexive or symmetric and the component of the identity in End(\mathbb{G}) contains something other than id, then it contains a proper retraction.

Theorem

If the smooth component of id in $\mathbb{G}^{\mathbb{G}}$ (or in any submonoid) contains a non-permutation, then it contains a proper retraction.

Corollary

If \mathbb{G} is smooth and the component of id contains a constant map, then the smooth part of $\mathbb{G}^{\mathbb{G}}$ is connected, \mathbb{G} is connected and it contains a loop.

Required Maltsev condition

Example

The digraph $\mathbb{G}=(\{0,1,2\} ; \neq)$ with 6 edges is connected, smooth, has algebraic length 1 , and the identity in $\mathbb{G}^{\mathbb{G}}$ is isolated.

Example (Larose, Zádori; 2004)

This poset has a semilattice polymorhism, but not dismantable, so $\operatorname{Pol}_{1}(\mathbb{G})=\operatorname{End}(\mathbb{G})$ is not connected.

How far can we push this?

- Smooth, algebraic length 1
- $\operatorname{Pol}_{1}(\mathbb{G})$
- Hobby-McKenzie terms (omitting types 1 and 5)

Putting everything together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- η_{a} is the projection kernel of $\operatorname{Pol}_{1}(\mathbb{G})$ onto its $a \in G$ coordinate
- $\tau \vee \eta_{a}=1$ because $p \eta_{a} p(a) \tau q(a) \eta_{a} q$,
- use join semi-distributivity

$$
\tau \vee \alpha=\tau \vee \beta \Longrightarrow \tau \vee \alpha=\tau \vee(\alpha \wedge \beta)
$$

to derive $\tau \vee\left(\bigwedge_{a} \eta_{a}\right)=1$, that is $\tau=1$.

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\operatorname{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

$$
m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \text { id. }
$$

- $\operatorname{Pol}_{1}(\mathbb{G})$ is in a congruence join semi-distributive over modular variety
- τ is solvable and $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ is congruence permutable

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

$$
m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \text { id. }
$$

- In a minimal counterexample id / τ contains only permutations

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

$$
m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \text { id. }
$$

- In a minimal counterexample id $/ \tau$ contains only permutations
- So $m(x, a, b)$ and $m(a, b, x)$ are permutations for all $a, b \in G$

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

$$
m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \text { id. }
$$

- In a minimal counterexample id / τ contains only permutations
- So $m(x, a, b)$ and $m(a, b, x)$ are permutations for all $a, b \in G$
- By Kiss, there is a Maltsev term for \mathbb{G}

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

$$
m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \text { id. }
$$

- In a minimal counterexample id / τ contains only permutations
- So $m(x, a, b)$ and $m(a, b, x)$ are permutations for all $a, b \in G$
- By Kiss, there is a Maltsev term for \mathbb{G}
- By Kazda, \mathbb{G} has a majority polymorphism

Putting everything Together

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected (and $\tau=1$).

- We prove that $\tau=1$ for the twin congruence of $\operatorname{Pol}_{1}(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

$$
m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \text { id. }
$$

- In a minimal counterexample id / τ contains only permutations
- So $m(x, a, b)$ and $m(a, b, x)$ are permutations for all $a, b \in G$
- By Kiss, there is a Maltsev term for \mathbb{G}
- By Kazda, \mathbb{G} has a majority polymorphism

Corollaries

Corollary

Every finite smooth connected digraph of algebraic length 1 with Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

```
Corollary
A locally finite idempotent variety V has Hobby-McKenzie terms (omits
types 1 and 5) iff for every algebra }\mathbf{A}\in\mathcal{V}\mathrm{ and connected subdirect relation
E}\leq\mp@subsup{\}{\mathrm{ sd }}{}\mp@subsup{\mathbf{A}}{}{2}\mathrm{ of algebraic length 1 the graph Pol}\mp@subsup{\mathbb{I}}{(}{}((A;E))\mathrm{ is connected.
```


Conjecture

If \mathbb{G} is smooth, connected, algebraic length 1 and has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Corollaries

Corollary

Every finite smooth connected digraph of algebraic length 1 with Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

Corollary

A locally finite idempotent variety \mathcal{V} has Hobby-McKenzie terms (omits types $\mathbf{1}$ and $\mathbf{5}$) iff for every algebra $\mathbf{A} \in \mathcal{V}$ and connected subdirect relation $\mathbf{E} \leq_{\mathrm{sd}} \mathbf{A}^{2}$ of algebraic length 1 the graph $\operatorname{Pol}_{1}((A ; E))$ is connected.

Conjecture
 If \mathbb{G} is smooth, connected, algebraic length 1 and has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Corollaries

Corollary

Every finite smooth connected digraph of algebraic length 1 with Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

Corollary

A locally finite idempotent variety \mathcal{V} has Hobby-McKenzie terms (omits types $\mathbf{1}$ and 5) iff for every algebra $\mathbf{A} \in \mathcal{V}$ and connected subdirect relation $\mathbf{E} \leq_{\text {sd }} \mathbf{A}^{2}$ of algebraic length 1 the graph $\operatorname{Pol}_{1}((A ; E))$ is connected.

Conjecture

If \mathbb{G} is smooth, connected, algebraic length 1 and has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Connectivity in Polid (\mathbb{G})

Theorem (M, Zádori; 2012)

If \mathbb{G} is reflexive, connected and has Gumm polymorphisms, then π_{1} and π_{2} are connected in the graph $\operatorname{Hom}^{\text {id }}\left(\mathbb{G}^{2}, \mathbb{G}\right)$ of idempotent binary morphisms.

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 digraph with Gumm polymorphisms, then the digraph $\operatorname{Pol}_{2}^{\text {id }}(\mathbb{G})$ on the set of idempotent binary polynomials of \mathbb{G} is connected (π_{1} and π_{2} are connected).

Proof.

Take a path id $=f_{0} \sim f_{1} \sim \cdots \sim f_{k}=c$ in $\operatorname{Pol}_{1}(\mathbb{G})$ for some constant c.

$$
\begin{aligned}
& d_{i}(x, x, y)=d_{i}\left(x, f_{0}(x), y\right) \sim d_{i}\left(x, f_{1}(x), y\right) \sim \cdots \sim d_{i}\left(x, f_{k}(x), y\right) \\
& =d_{i}(x, c, y)=d_{i}\left(x, f_{k}(y), y\right) \sim \cdots \sim d_{i}\left(x, f_{0}(y), y\right)=d_{i}(x, y, y), \text { and } \\
& p(x, y, y)=p\left(f_{0}(x), f_{0}(y), y\right) \sim p\left(f_{1}(x), f_{1}(y), y\right) \sim \cdots \sim p(c, c, y)=y
\end{aligned}
$$

IDEMPOTENT SUBALGEBRAS

Definition

An idempotent subalgebra of \mathbf{A} is a subalgebra $\mathbf{B} \leq \mathbf{A}$ that is closed under all idempotent polynomials of \mathbf{A}.

Proposition

If Polid $_{2}^{\text {id }}(\mathbb{G})$ is connected, then every smooth idempotent subalgebra of \mathbb{G} is connected.

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_{i}(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras $p(x, s(x), s(y))$ and $p(s(x), s(y), y)$ are idempotent binary polynomials for any choice of unary polynomial s

Idempotent subalgebras

Definition

An idempotent subalgebra of \mathbf{A} is a subalgebra $\mathbf{B} \leq \mathbf{A}$ that is closed under all idempotent polynomials of \mathbf{A}.

Proposition

If Polid $_{2}^{\text {id }}(\mathbb{G})$ is connected, then every smooth idempotent subalgebra of \mathbb{G} is connected.

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_{i}(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras $p(x, s(x), s(y))$ and $p(s(x), s(y), y)$ are idempotent binary polynomials for any choice of unary polynomial s.

Idempotent subalgebras

Definition

An idempotent subalgebra of \mathbf{A} is a subalgebra $\mathbf{B} \leq \mathbf{A}$ that is closed under all idempotent polynomials of \mathbf{A}.

Proposition

If Polid $_{2}^{\text {id }}(\mathbb{G})$ is connected, then every smooth idempotent subalgebra of \mathbb{G} is connected.

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_{i}(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras $p(x, s(x), s(y))$ and $p(s(x), s(y), y)$ are idempotent binary polynomials for any choice of unary polynomial s

IDEMPOTENT SUBALGEBRAS

Definition

An idempotent subalgebra of \mathbf{A} is a subalgebra $\mathbf{B} \leq \mathbf{A}$ that is closed under all idempotent polynomials of \mathbf{A}.

Proposition

If Polid $_{2}^{\text {id }}(\mathbb{G})$ is connected, then every smooth idempotent subalgebra of \mathbb{G} is connected.

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_{i}(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras $p(x, s(x), s(y))$ and $p(s(x), s(y), y)$ are idempotent binary polynomials for any choice of unary polynomial s.

Problems

Let \mathbb{G} be smooth connected digraph of algebraic length 1 with Taylor polymorphism

- $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ is generated by two elements (id and c)
- Every τ block is smooth, connected, algebraic length 1
- Every τ block contains a loop (by the loop lemma)
- $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ has a compatible semigroup operation (composition)
- Does $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ have compatible semilattice (totally symmetric) operation?

Problems

Let \mathbb{G} be smooth connected digraph of algebraic length 1 with Taylor polymorphism

- $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ is generated by two elements (id and c)
- Every τ block is smooth, connected, algebraic length 1
- Every τ block contains a loop (by the loop lemma)
- $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ has a compatible semigroup operation (composition)
- Does $\operatorname{Pol}_{1}(\mathbb{G}) / \tau$ have compatible semilattice (totally symmetric) operation?
Let \mathbf{A} be an algebra.
- If $\tau=1$ in $\operatorname{Pol}_{1}(\mathbf{A})$, then the term condition $C(1,1 ; \alpha)$ does not hold for any $\alpha<1$. What are the connections between $\tau=1$, term condition, rectangulation?
- If \mathbf{A} has Willard-terms (omitting types $\mathbf{1}$ and $\mathbf{2}$), does $\operatorname{Pol}_{1}(\mathbf{A}) / \tau$ have a semilattice (totally symmetric) term?

Thank You!

