The structure of polynomial operations associated with smooth digraphs

Gergő Gyenizse, Miklós Maróti and László Zádori

University of Szeged

Boulder, 2014. May 21.

A **digraph** is a pair $\mathbb{G} = (G; \rightarrow)$, where G is the set of **vertices** and $\rightarrow \subseteq G^2$ is the set of **edges**.

Definition

A **homomorphism** from \mathbb{G} to \mathbb{H} is a map $f : G \to H$ that preserves edges:

$$a \rightarrow b \text{ in } \mathbb{G} \implies f(a) \rightarrow f(b) \text{ in } \mathbb{H}.$$

 $\mathsf{Hom}(\mathbb{G},\mathbb{H}) = \{ f \mid f : \mathbb{G} \to \mathbb{H} \}, \text{ write } \mathbb{G} \to \mathbb{H} \text{ iff } \mathsf{Hom}(\mathbb{G},\mathbb{H}) \neq \emptyset.$

Definition

The clone of **polymorphisms** of \mathbb{G} is $\operatorname{Hom}(\mathbb{G}) = \bigcup_{n=1}^{\infty} \operatorname{Hom}(\mathbb{G}^n, \mathbb{G})$.

CSP AND CORES

Definition

The constraint satisfaction problem for template $\mathbb H$ is the membership problem for

$$\mathsf{CSP}(\mathbb{G}) = \{ \mathbb{H} \mid \mathbb{H} \to \mathbb{G} \}.$$

Proposition

 \to is a quasi-order on the set of finite digraphs. If $\mathbb G$ is a minimal member of the \leftrightarrow class of $\mathbb H,$ then

- every endomorphism of \mathbb{G} is an automorphism,
- ullet \mathbb{G} is uniquely determined up to isomorphism, and
- \mathbb{G} is isomorphic to an induced substructure of \mathbb{H} .

Definition

 \mathbb{G} is a **core** if it has no proper endomorphism. The **core of** \mathbb{H} is the uniquely determined core structure in the \leftrightarrow class of \mathbb{H} .

Gyenizse, Maróti, Zádori (Szeged)

Polynomials of smooth digraphs

FINITE DUALITY AND EXPONENTIATION

- $\bullet\,$ set of finite relational structures modulo \leftrightarrow is a partially ordered set
- isomorphic to the set of core isomorphism types
- minimal [maximal] element: 1-element structure, with empty [full] relations
- join: disjoint union, meet: direct product,
- satisfies distributive laws, join irreducible = connected
- Heyting algebra (relatively pseudocomplemented)
- $\mathbb{F} \wedge \mathbb{G} \to \mathbb{H} \iff \mathbb{H}^{\mathbb{F} \times \mathbb{G}} = (\mathbb{H}^{\mathbb{G}})^{\mathbb{F}}$ has a loop $\iff \mathbb{F} \to \mathbb{H}^{\mathbb{G}}$
- \bullet if $\mathbb G$ is join irreducible with lower cover $\mathbb H,$ then $(\mathbb G,\mathbb H^{\mathbb G})$ is a dual pair

Theorem (Nešetřil, Tardif, 2010)

Let \mathbb{G} be a finite connected core structure. Then \mathbb{G} has a dual pair \mathbb{H} , i.e. $\{\mathbb{F} \mid \mathbb{F} \to \mathbb{G}\} = \{\mathbb{F} \mid \mathbb{H} \not\to \mathbb{F}\}$, if and only if \mathbb{G} is a tree.

Let $\mathbb{H}^{\mathbb{G}}$ be the digraph on the set $H^{\mathcal{G}}$ with edge relation $f \to g$ iff

$$a \rightarrow b$$
 in $\mathbb{G} \implies f(a) \rightarrow g(b)$ in \mathbb{H} .

Proposition

- Hom(\mathbb{G}, \mathbb{H}) = { $f \in \mathbb{H}^{\mathbb{G}} : f \to f$ }
- $\mathbb{G}^n = \mathbb{G}^{\mathbb{L}_n}$ where $\mathbb{L}_n = (\{1, \dots, n\}; =)$

•
$$(\mathbb{H}^{\mathbb{G}})^{\mathbb{F}} = \mathbb{H}^{\mathbb{G} \times \mathbb{F}}$$

- $\mathbb{H}^{\mathbb{F}} \times \mathbb{G}^{\mathbb{F}} = (\mathbb{H} \times \mathbb{G})^{\mathbb{F}}$
- the composition map $\circ:\mathbb{H}^{\mathbb{G}}\times\mathbb{G}^{\mathbb{F}}\to\mathbb{H}^{\mathbb{F}}$ is a homomorphism
- If $f\to g$ in $\mathbb{H}^{\mathbb{G}^n}$ and $f_1\to g_1,\ldots,f_n\to g_n$ in $\mathbb{G}^{\mathbb{F}},$ then

$$f(f_1,\ldots,f_n) o g(g_1,\ldots g_n)$$
 in $\mathbb{H}^{\mathbb{F}}$

- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $CSP(\mathbb{G}^{\mathbb{G}})$ has a solution. Can we test for non-trivial solutions?
- $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}} = \mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\mathsf{CSP}(\mathbb{G})$, then we can test if an instance of $\mathsf{CSP}(\mathbb{G}^{\mathbb{G}})$ has a non-trivial solution.
- \bullet If we can test for non-trivial solutions in $\mathsf{CSP}(\mathbb{G}^\mathbb{G}),$ then we can solve $\mathsf{CSP}(\mathbb{G}).$
- Connectivity properties of $\mathbb{G}^{\mathbb{G}}$ sometimes can be lifted to the set of solutions in $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}}$.

- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $CSP(\mathbb{G}^{\mathbb{G}})$ has a solution. Can we test for non-trivial solutions?
- $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}} = \mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\mathsf{CSP}(\mathbb{G})$, then we can test if an instance of $\mathsf{CSP}(\mathbb{G}^{\mathbb{G}})$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\mathsf{CSP}(\mathbb{G}^\mathbb{G}),$ then we can solve $\mathsf{CSP}(\mathbb{G}).$
- Connectivity properties of $\mathbb{G}^{\mathbb{G}}$ sometimes can be lifted to the set of solutions in $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}}$.

- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $CSP(\mathbb{G}^{\mathbb{G}})$ has a solution. Can we test for non-trivial solutions?
- $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}} = \mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\mathsf{CSP}(\mathbb{G})$, then we can test if an instance of $\mathsf{CSP}(\mathbb{G}^{\mathbb{G}})$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\mathsf{CSP}(\mathbb{G}^\mathbb{G}),$ then we can solve $\mathsf{CSP}(\mathbb{G}).$
- Connectivity properties of $\mathbb{G}^{\mathbb{G}}$ sometimes can be lifted to the set of solutions in $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}}$.

- $\mathbb{G}^{\mathbb{G}}$ has a loop at id, so every instance of $CSP(\mathbb{G}^{\mathbb{G}})$ has a solution. Can we test for non-trivial solutions?
- $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}} = \mathbb{G}^{(\mathbb{G} \times \mathbb{H})}$
- If \mathbb{G} is a core and we can solve $\mathsf{CSP}(\mathbb{G})$, then we can test if an instance of $\mathsf{CSP}(\mathbb{G}^{\mathbb{G}})$ has a non-trivial solution.
- If we can test for non-trivial solutions in $\mathsf{CSP}(\mathbb{G}^\mathbb{G}),$ then we can solve $\mathsf{CSP}(\mathbb{G}).$
- Connectivity properties of $\mathbb{G}^{\mathbb{G}}$ sometimes can be lifted to the set of solutions in $(\mathbb{G}^{\mathbb{G}})^{\mathbb{H}}$.

Theorem (Gyenizse; 2013)

Suppose, that $|\mathbb{G}| \ge 6$. Then $\mathbb{G}^{\mathbb{G}}$ is connected if and only if

- \mathbb{G} is empty,
- there exists $a \in G$ such that $a \rightarrow x$ for all $x \in G$, or
- there exists $a \in G$ such that $x \to a$ for all $x \in G$.

Definition

 $\mathsf{End}(\mathbb{G})$ is the induced subgraphs of $\mathbb{G}^{\mathbb{G}}$ on $\mathsf{Hom}(\mathbb{G},\mathbb{G})$. $\mathsf{Aut}(\mathbb{G}) = \mathsf{End}(\mathbb{G}) \cap \mathsf{Sym}(G)$.

Theorem (Gyenizse; 2013)

 $Aut(\mathbb{G})$ is a disjoint union of complete digraphs. The number of elements in each component is the same and is a product of factorials.

Gyenizse, Maróti, Zádori (Szeged)

Polynomials of smooth digraphs

Theorem (Larose, Zádori; 1997)

If \mathbb{G} is a connected poset and has Maltsev polymorphisms, then $End(\mathbb{G})$ is connected.

Theorem (Larose, Loten, Zádori; 2005)

If \mathbb{G} is connected, reflexive, symmetric and has Hobby-McKenzie polymorphisms (for omitting types 1 and 5), then $End(\mathbb{G})$ is connected.

Theorem (M, Zádori; 2012)

If $\mathbb G$ is connected, reflexive and has Hobby-McKenzie polymorphisms, then $End(\mathbb G)$ is connected.

Theorem (Larose, Loten, Zádori; 2005)

If a finite reflexive and symmetric digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism

Theorem (M, Zádori; 2012)

If a finite reflexive digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism and totally symmetric polymorphisms for all arities.

Theorem (Kazda; 2011)

If a finite digraph has a Maltsev polymorphism, then it has a majority polymorphism.

- \bullet We need a structural property on ${\mathbb G}$
- \bullet We need an induced subgraph of $\mathbb{G}^{\mathbb{G}}$
- \bullet We need some polymorphisms of $\mathbb G$

REDUCTION OF CSP TO DIGRAPHS

Theorem (Bulín, Delić, Jackson, Niven; 2013)

For every finite relational structure \mathbb{A} there exists a finite digraph \mathbb{G} , such that $CSP(\mathbb{A})$ and $CSP(\mathbb{G})$ are polynomially equivalent and almost all Maltsev conditions, e.g.

- Taylor term,
- Willard terms,
- Hobby-McKenzie terms,
- Gumm terms,
- edge term,
- Jónsson terms,
- near-unanimity term,
- but not Maltsev term

hold equivalently by \mathbb{A} and \mathbb{G} .

REQUIRED STRUCTURAL PROPERTY

Definition

The digraph $\mathbb G$ is smooth if its edge relation is subdirect (no sources and sinks).

Definition

The **algebraic length** of a directed path is the number of forward edges minus the number of backward edges. The algebraic length of \mathbb{G} is the smallest positive algebraic length of oriented cycles (closed paths) of \mathbb{G} .

- $\bullet\,$ If \mathbb{G}^2 is connected, then \mathbb{G} is connected, has algebraic length 1 and has no source or no sink.
- If G is smooth, algebraic length 1 and (strongly) connected, then Gⁿ is smooth, algebraic length 1 and (strongly) connected for all n ≥ 1.

Theorem

If $\mathbb{G} = (G; E)$ is smooth, connected, algebraic length 1, and has Maltsev polymorphism, then it has join and meet polymorphisms.

Gyenizse, Maróti, Zádori (Szeged)

Lemma (Barto, Kozik, Niven; 2008)

If $\mathbb G$ is connected, smooth, algebraic length 1 and has a weak near-unanimity polymorphism, then $\mathbb G$ has a loop.

Theorem (Barto, Kozik, Niven; 2008)

The core of a smooth digraph with a weak near-unanimity polymorphism is a disjoint union of cycles.

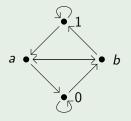
Proposition

If $\mathbb{G}^{\mathbb{G}}$ is strongly connected, then \mathbb{G} has a loop.

Take a path id $\rightarrow f_1 \rightarrow f_2 \rightarrow \ldots f_n \rightarrow id$ where f_k is a constant map. Then id $f_1 \cdots f_{n-1} \cdot f_n \rightarrow f_1 \cdot f_2 \cdots f_n \cdot id$, so we have a loop at $f_1 \cdots f_n$, which is a constant map.

Example

The following digraph $\mathbb G$ has Maltsev, join and meet semilattice polymorphisms.



It has only four endomorphisms: id, 0, 1 and inversion, they are all isolated. However, id is connected to 0 in $\mathbb{G}^{\mathbb{G}}$:

$$\mathsf{id} = x \land 1 \to x \land a \to x \land 0 = 0.$$

Required subgraph of $\mathbb{G}^{\mathbb{G}}$

Definition

 $\mathsf{Pol}_1(\mathbb{G})$ is the induced subgraph of $\mathbb{G}^{\mathbb{G}}$ on the set of **unary polynomials** of the algebra $\mathbf{G} = (G; \mathsf{Hom}(\mathbb{G})).$

Proposition

- $\mathsf{Pol}_1(\mathbb{G}) \leq \mathbf{G}^G$ is generated by the identity and the constant maps
- $\bullet~\mathbb{G}$ is an induced subgraph of $\mathsf{Pol}_1(\mathbb{G})$ on the set of constant maps
- \bullet $\mathsf{Pol}_1(\mathbb{G})$ is smooth if and only if \mathbb{G} is smooth
- If G is smooth, connected and algebraic length 1, then every component of Pol₁(G) has algebraic length 1

Proof.

For a polynomial $p = t(x, a_1, ..., a_n)$ we can find an oriented cycle in \mathbb{G}^n of algebraic length 1 going through $(a_1, ..., a_n)$. Then the polymorphism $t \in \text{Hom}(\mathbb{G}^{n+1}, \mathbb{G}) = \text{Hom}(\mathbb{G}^n, \mathbb{G}^{\mathbb{G}})$ maps this cycle to a cycle in $\text{Pol}_1(\mathbb{G})$.

Proposition

If \mathbb{G} is smooth, connected and algebraic length 1, then the connectedness relation on $Pol_1(\mathbb{G})$ is a congruence.

Definition

Let **A** be an algebra. Two unary polynomials $p, q \in Pol_1(\mathbf{A})$ are **twins**, if there exist a term t of arity n + 1 and constants $\bar{a}, \bar{b} \in A^n$ such that

$$p = t(x, \overline{a})$$
 and $q = t(x, \overline{b})$.

The transitive closure of twin polynomials is the **twin congruence** τ of the algebra $Pol_1(\mathbf{A})$.

Corollary

If $\mathbb G$ is smooth, connected and algebraic length 1, then the twin congruence blocks are connected.

Gyenizse, Maróti, Zádori (Szeged)

Polynomials of smooth digraphs

THE COMPONENT OF THE IDENTITY

Definition

A map $f \in \mathbb{G}^{\mathbb{G}}$ is **idempotent**, if $f^2 = f$; it is a **retraction**, if $f \to f$ and $f^2 = f$; and it is **proper**, if $f \neq id$.

Lemma (M, Zádori; 2012)

If \mathbb{G} is reflexive or symmetric and the component of the identity in $End(\mathbb{G})$ contains something other than id, then it contains a proper retraction.

Theorem

If the smooth component of id in $\mathbb{G}^{\mathbb{G}}$ (or in any submonoid) contains a non-permutation, then it contains a proper retraction.

Corollary

If \mathbb{G} is smooth and the component of id contains a constant map, then the smooth part of $\mathbb{G}^{\mathbb{G}}$ is connected, \mathbb{G} is connected and it contains a loop.

Gyenizse, Maróti, Zádori (Szeged)

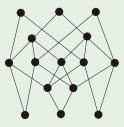
Polynomials of smooth digraphs

Example

The digraph $\mathbb{G} = (\{0, 1, 2\}; \neq)$ with 6 edges is connected, smooth, has algebraic length 1, and the identity in $\mathbb{G}^{\mathbb{G}}$ is isolated.

Example (Larose, Zádori; 2004)

This poset has a semilattice polymorhism, but not dismantable, so $Pol_1(\mathbb{G}) = End(\mathbb{G})$ is not connected.



Gyenizse, Maróti, Zádori (Szeged)

Polynomials of smooth digraphs

- Smooth, algebraic length 1
- $\mathsf{Pol}_1(\mathbb{G})$
- Hobby-McKenzie terms (omitting types 1 and 5)

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

• We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
 - η_a is the projection kernel of $\mathsf{Pol}_1(\mathbb{G})$ onto its $a \in G$ coordinate
 - $\tau \lor \eta_a = 1$ because $p \eta_a p(a) \tau q(a) \eta_a q$,
 - use join semi-distributivity

$$\tau \lor \alpha = \tau \lor \beta \implies \tau \lor \alpha = \tau \lor (\alpha \land \beta)$$

to derive $\tau \lor (\bigwedge_a \eta_a) = 1$, that is $\tau = 1$.

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term *m* satisfying

 $m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \mathrm{id}$.

• $\operatorname{Pol}_1(\mathbb{G})$ is in a congruence join semi-distributive over modular variety • τ is solvable and $\operatorname{Pol}_1(\mathbb{G})/\tau$ is congruence permutable

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

 $m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \mathrm{id}$.

• In a minimal counterexample id / au contains only permutations

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term m satisfying

 $m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \mathrm{id}$.

- In a minimal counterexample id / au contains only permutations
- So m(x, a, b) and m(a, b, x) are permutations for all $a, b \in G$

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term *m* satisfying

 $m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \mathrm{id}$.

- In a minimal counterexample id / au contains only permutations
- So m(x, a, b) and m(a, b, x) are permutations for all $a, b \in G$
- $\bullet\,$ By Kiss, there is a Maltsev term for $\mathbb G$

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term *m* satisfying

 $m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \mathrm{id}$.

- In a minimal counterexample id / au contains only permutations
- So m(x, a, b) and m(a, b, x) are permutations for all $a, b \in G$
- $\bullet\,$ By Kiss, there is a Maltsev term for $\mathbb G$
- $\bullet\,$ By Kazda, $\mathbb G$ has a majority polymorphism

If \mathbb{G} is a smooth, connected, algebraic length 1 with Hobby-McKenzie polymorphisms, then $Pol_1(\mathbb{G})$ is connected (and $\tau = 1$).

- We prove that au=1 for the twin congruence of $\mathsf{Pol}_1(\mathbb{G})$
- Clear for join semi-distributivite (omitting types 1, 2 and 5)
- From Hobby-McKenzie TCT we get a ternary term *m* satisfying

 $m(\mathrm{id}, f, f) \tau m(f, f, \mathrm{id}) \tau \mathrm{id}$.

- In a minimal counterexample id / au contains only permutations
- So m(x, a, b) and m(a, b, x) are permutations for all $a, b \in G$
- $\bullet\,$ By Kiss, there is a Maltsev term for $\mathbb G$
- $\bullet\,$ By Kazda, $\mathbb G$ has a majority polymorphism

Corollary

Every finite smooth connected digraph of algebraic length 1 with Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

Corollary

A locally finite idempotent variety \mathcal{V} has Hobby-McKenzie terms (omits types **1** and **5**) iff for every algebra $\mathbf{A} \in \mathcal{V}$ and connected subdirect relation $\mathbf{E} \leq_{\mathrm{sd}} \mathbf{A}^2$ of algebraic length 1 the graph $\mathsf{Pol}_1((A; E))$ is connected.

Conjecture

If G is smooth, connected, algebraic length 1 and has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Corollary

Every finite smooth connected digraph of algebraic length 1 with Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

Corollary

A locally finite idempotent variety \mathcal{V} has Hobby-McKenzie terms (omits types 1 and 5) iff for every algebra $\mathbf{A} \in \mathcal{V}$ and connected subdirect relation $\mathbf{E} \leq_{\mathrm{sd}} \mathbf{A}^2$ of algebraic length 1 the graph $\mathsf{Pol}_1((A; E))$ is connected.

Conjecture

If G is smooth, connected, algebraic length 1 and has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Corollary

Every finite smooth connected digraph of algebraic length 1 with Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

Corollary

A locally finite idempotent variety \mathcal{V} has Hobby-McKenzie terms (omits types 1 and 5) iff for every algebra $\mathbf{A} \in \mathcal{V}$ and connected subdirect relation $\mathbf{E} \leq_{\mathrm{sd}} \mathbf{A}^2$ of algebraic length 1 the graph $\mathsf{Pol}_1((A; E))$ is connected.

Conjecture

If \mathbb{G} is smooth, connected, algebraic length 1 and has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Theorem (M, Zádori; 2012)

If \mathbb{G} is reflexive, connected and has Gumm polymorphisms, then π_1 and π_2 are connected in the graph $\operatorname{Hom}^{\operatorname{id}}(\mathbb{G}^2,\mathbb{G})$ of idempotent binary morphisms.

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 digraph with Gumm polymorphisms, then the digraph $\operatorname{Pol}_2^{\operatorname{id}}(\mathbb{G})$ on the set of idempotent binary polynomials of \mathbb{G} is connected (π_1 and π_2 are connected).

Proof.

Take a path id = $f_0 \sim f_1 \sim \cdots \sim f_k = c$ in $Pol_1(\mathbb{G})$ for some constant c.

$$d_i(x, x, y) = d_i(x, f_0(x), y) \sim d_i(x, f_1(x), y) \sim \cdots \sim d_i(x, f_k(x), y)$$

= $d_i(x, c, y) = d_i(x, f_k(y), y) \sim \cdots \sim d_i(x, f_0(y), y) = d_i(x, y, y)$, and
 $p(x, y, y) = p(f_0(x), f_0(y), y) \sim p(f_1(x), f_1(y), y) \sim \cdots \sim p(c, c, y) = y.$

An idempotent subalgebra of A is a subalgebra $B \le A$ that is closed under all idempotent polynomials of A.

Proposition

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_i(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras p(x, s(x), s(y)) and p(s(x), s(y), y) are idempotent binary polynomials for any choice of unary polynomial *s*.

An idempotent subalgebra of A is a subalgebra $B \le A$ that is closed under all idempotent polynomials of A.

Proposition

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_i(x, a, y)$ are idempotent binary polynomials for any choice of constant *a*.
- For Maltsev algebras p(x, s(x), s(y)) and p(s(x), s(y), y) are idempotent binary polynomials for any choice of unary polynomial s.

An idempotent subalgebra of A is a subalgebra $B \le A$ that is closed under all idempotent polynomials of A.

Proposition

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_i(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras p(x, s(x), s(y)) and p(s(x), s(y), y) are idempotent binary polynomials for any choice of unary polynomial *s*.

An idempotent subalgebra of A is a subalgebra $B \le A$ that is closed under all idempotent polynomials of A.

Proposition

- Somewhat related to absorbing subalgebra (is it the same?)
- For Jónsson algebras $d_i(x, a, y)$ are idempotent binary polynomials for any choice of constant a.
- For Maltsev algebras p(x, s(x), s(y)) and p(s(x), s(y), y) are idempotent binary polynomials for any choice of unary polynomial s.

Let $\mathbb G$ be smooth connected digraph of algebraic length 1 with Taylor polymorphism

- $\mathsf{Pol}_1(\mathbb{G})/ au$ is generated by two elements (id and c)
- Every au block is smooth, connected, algebraic length 1
- Every au block contains a loop (by the loop lemma)
- $\mathsf{Pol}_1(\mathbb{G})/ au$ has a compatible semigroup operation (composition)
- Does $\operatorname{Pol}_1(\mathbb{G})/\tau$ have compatible semilattice (totally symmetric) operation?

Let $\mathbb G$ be smooth connected digraph of algebraic length 1 with Taylor polymorphism

- $\mathsf{Pol}_1(\mathbb{G})/ au$ is generated by two elements (id and c)
- $\bullet\,$ Every $\tau\,$ block is smooth, connected, algebraic length 1 $\,$
- Every au block contains a loop (by the loop lemma)
- $\mathsf{Pol}_1(\mathbb{G})/ au$ has a compatible semigroup operation (composition)
- Does $\operatorname{Pol}_1(\mathbb{G})/\tau$ have compatible semilattice (totally symmetric) operation?
- Let **A** be an algebra.
 - If $\tau = 1$ in Pol₁(**A**), then the term condition $C(1, 1; \alpha)$ does not hold for any $\alpha < 1$. What are the connections between $\tau = 1$, term condition, rectangulation?
 - If **A** has Willard-terms (omitting types **1** and **2**), does $Pol_1(A)/\tau$ have a semilattice (totally symmetric) term?

Thank You!